If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+196x+195=0
a = -3; b = 196; c = +195;
Δ = b2-4ac
Δ = 1962-4·(-3)·195
Δ = 40756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40756}=\sqrt{4*10189}=\sqrt{4}*\sqrt{10189}=2\sqrt{10189}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(196)-2\sqrt{10189}}{2*-3}=\frac{-196-2\sqrt{10189}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(196)+2\sqrt{10189}}{2*-3}=\frac{-196+2\sqrt{10189}}{-6} $
| 10x-2.5x+8=3.5+1.25x-6 | | 0=-16t^2+82.7t | | 21=4/t | | 3.5(x+4)+4.5x=2(x-6.5 | | v/2+8=-3 | | 0=-16t^2+64t+82.7t | | 10X-5/2x+8=-7/2+5/4x-6 | | 2*13+(-16)=t | | 7x+15=10x-21=14x-6 | | 4x=10x+2 | | 0=-16t^2+64t+82.7 | | 24*3=t+8+5 | | 0=-16t2+64t+82.8 | | 14/20=a/10 | | 0=16t2+64t+82.7 | | 2=1.015^12t | | 16x+7=21x-3 | | 2x+4+3x=4+5x | | 1/x^2=20 | | -9(3-x)=(x-3)-6 | | -3(2y+4)-6=-4(y-5)+y | | 9x+3-12x+6=11x-14x+7 | | -3(2y+4)-6=-4(y+5)+y | | 9h+16=70 | | 4x^2+4x-728=0 | | 9x+10=7x+18 | | 9x+3-13x+6=11x-14x+7 | | 4p-11(p=3 | | 17x-5=13x+11 | | v/3-1/3=1/6 | | 9.5×30=x | | |2x+4|-6x=28 |